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Abstract – Proposed missions to explore comets and
moons will encounter environments that are hostile and
unpredictable. Any successful explorer must be able to
adapt to a wide range of possible operating conditions in
order to survive. The traditional approach of construct-
ing special-purpose control methods would require a in-
formation about the environment, which is not available
a priori for these missions. An alternate approach is to
utilize a general control approach with significant capa-
bility to adapt its behavior, a so calledadaptive problem-
solvingmethodology. Using adaptive problem-solving,
a spacecraft can use reinforcement learning to adapt
an environment-specific search strategy given the craft’s
general problem solver with a flexible control architec-
ture. The resulting methods would enable the spacecraft
increase its performance with respect to probability of
survival and mission goals. We discuss an application
of this approach to learn control strategies in planning
and scheduling for three space mission models: Space
Technologies 4, a Mars Rover, and Earth Observer One.
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INTRODUCTION

Proposed missions to explore comets and moons will en-
counter environments that are hostile and unpredictable. Be-
cause of light-time communication delays, these missions re-
quire an autonomous explorer that can adapt to handle pos-
sible environments. For autonomous planning systems, the
high-level actions of the spacecraft must be planned with suf-
ficient environmental information to ensure that the resulting
plans are admissible. Generic control methods will not ac-
count for domain-specific features when operating a space-
craft. The spacecraft could easily be lost based on inappro-
priate behavior for the particular environment due to overly-
generic control methods [8].
On the other hand, developing and testing domain-specific
control methods is extremely difficult, and requires support
of a domain expert. Moreover, the domain expert must have
knowledge about the environment in which the spacecraft is
operating, which is not available before the spacecraft arrives
at the location to explore. If experts are not available, the
spacecraft must be able to automatically adapt a flexible con-
trol structure specific to the new environment.
Adaptive problem solvingaddresses these problems by en-
abling the development and maintenance of effective control
strategies without extensive domain-specific knowledge. An
adaptive problem solver is given: (1) a generic set of con-
trol strategies and (2) a flexible control architecture, and uses
a statistical method to estimate the quality of each control
strategy or generate a more appropriate strategy. Adaptive
problem solving also provides hard statistical guarantees on
the quality of the behavior for each adapted control method.
Using adaptive problem solving techniques, spacecraft explo-
ration in unknown environments becomes feasible.
In this paper, we describe how adaptive problem solving can
be used to adapt the control methods of a spacecraft in-
situ without relying on domain expertise. The value of this
method is empirically shown in the context of three space-
craft operations scheduling problems in a generic planning
and scheduling environment. By adapting control strategies
for each domain, the lifespan of the spacecraft is improved
since the adaptive problem solver can increase chances of
spacecraft survival and continue to update the control meth-
ods based on aging hardware or environmental changes.

Motivational Example

The comet lander will land on a surface of unknown density,
with the goals of drilling into the comet90% and imaging



its surroundings10% of the time allocated to accomplishing
the goals. Many situations will force these percentages to be
adapted. One scenario might be that the surface of the comet
is much denser than expected, so the rate of drilling is de-
creased and the wear on the drill is increased. The lander
might decide to adjust its priorities to taking more images
instead of drilling. Another scenario might be that drilling
caused a layer of dust on the surface to drift up, the dust might
limit the visibility of the lander. Taking images might be inef-
fective, so the lander would optimally delay its drilling activ-
ities until the dust settled, or put off taking images altogether.
Failure to adapt to these situations could cost the lander the
mission, by depleting resources too rapidly, not accomplish-
ing mission objectives, or wearing out equipment. Not all
possible situations can be enumerated before the mission; in-
stead an adaptive problem solver checks the current control
strategy’s performance in the given environment and responds
to changes by adapting the control strategy, independent of
the cause of the change. An adaptive problem solver would
continually adapt the control strategy if it found the current
strategy non-optimal.

MOTIVATION FOR ADAPTIVE PROBLEM SOLVING

Selecting an effective control strategy in a specific domain
from a set is difficult without information about how the
strategies perform over a distribution of tasks in that domain.
Although there exist classes of heuristics that are intended to
be suitable for all planning domains, some amount of effi-
ciency is sacrificed in generalizing the heuristics by failing to
take advantage of the specific domain structure [8]. On the
other hand, determining how each heuristic or set of heuris-
tics performs in a problem domain can be costly.
Adaptive problem solving attempts to estimate the perfor-
mance of each strategy in a given domain by collecting sam-
ples of the strategy’s performance over the problem distribu-
tion. The control strategies are represented as sets of heuris-
tics so that they may be robust enough to perform well over
the entire problem distribution even when they are slightly
suboptimal, as opposed to a single heuristic which may not
be as flexible. Some amount of generality is beneficial when
domains are not knowna priori, the domain structure changes
rapidly, or a domain expert is not available and a complete
strategy domain search is not possible.

PLANNING SYSTEM

The planning and scheduling system with a flexible control
architecture used to evaluate the control strategies for each
model is a version of the ASPEN (Automated Scheduling
and Planning ENvironment) system [4]. ASPEN is a con-
figurable, generic planning/scheduling application framework
that can be tailored to specific domains to create conflict-free
plans or schedules.
ASPEN employs planning and scheduling techniques to au-
tomatically generate a necessary activity sequence to achieve
the input goals. This sequence is produced by utilizing an
iterative repair algorithm [18] which classifies conflicts and
attacks them each individually. Conflicts occur when a plan
constraint has been violated where this constraint could be
temporal or involve a resource, state or activity parameter.
Conflicts are resolved by performing one or more schedule
modifications such as moving, adding, or deleting activities
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Figure 1:Hypothesis Generation Diagram

at a point in the search where a choice can be made by the
scheduler, called a choice point. The target of the repair mod-
ification is chosen by a heuristic method. For each type of
choice point, there exists a different set of heuristic methods
to use in repair which can be modified easily.
The quality of a resulting schedule generated by ASPEN is
measured by a set of preferences specified by the user. This
set of preferences specifies the quality functions associated
with certain metrics in the schedule, such as battery power
usage or number of science goals achieved, and the possible
cutoffs of the metric values. Although currently the ASPEN
system does not take preferences into account while it per-
forms iterative repair, this is a possible addition to the heuris-
tics in future work.

GENERATING CONTROL STRATEGIES

Control strategies can be generated using search techniques
and evaluated using adaptive problem solving. Given a set
of control strategies, the adaptive problem solver selects the
top strategy or strategies based on estimations of their quality
parameters, and returns them to the search algorithm. The
search algorithm produces the subsequent set of hypotheses
using algorithm-specific techniques. The new set of strategies
is passed to the adaptive problem solver for evaluation. This
cycle continues until a certain amount of time has passed or
another stopping criterion of the specific search algorithm has
been met (see figure 1).

ADAPTIVE PROBLEM SOLVING

The adaptive problem solver attempts to select the top strate-
gies from a set of strategies, supplied by the search algorithm,
whose quality is a function of unknown environmental pa-
rameters. It makes estimates of the parameters for utility
of a strategy and cost of a sample in order to achieve a re-
quested accuracy for a statistical decision requirement, which
is a function of the accuracy of each pair-wise comparison of
set members. The adaptive problem solver iteratively refines
the utility and cost parameter estimates by acquiring training
examples at the estimated cost for each strategy (see figure 2).
The normal parametric model for reasoning about statistical
error is used in this analysis, which assumes that the differ-
ence between the expected utility and estimated utility of a
hypothesis can be accurately approximated by a normal dis-
tribution. This assumption is grounded in the Central Limit
Theorem and is further discussed in [2]. The analysis would



Update Parameter
Collect Sample
for hi and hbest

hbest

h1

h2

hk

H1

H

HK

2

Estimates

Problem 1

Figure 2:Adaptive Problem Solving Diagram

change given a different parametric model, but the results
should be analogous for conventional models.

Since parameter estimates are refined by random sampling, it
is impossible to place perfect accuracy requirements on the
selection algorithms. In practice, probabilistic requirements,
or decision criteria, on the relative accuracy of the parameter
estimates (and subsequent strategy selection) are chosen as
parameterized forms that allow a tradeoff between accuracy
and cost.

Specifically, decision requirements take a set of hypotheses
and a probabilistic error bound, and terminate when one of the
hypotheses can be shown to have the greatest mean, evaluated
through pair-wise comparisons, with a confidence specified
by the given error bound. The overall error for selection is a
function of the error of each pair-wise comparison. Rational
analysis can be used to allocate error to each pairwise com-
parison in such a way as to attempt to optimize the resource
usage necessary to acquire a sufficient number of samples to
achieve the decision requirement.

In this analysis, the decision requirement that is used in the
adaptive problem solver is the probably approximately correct
(PAC) requirement. The approach of using adaptive solving
with rational analysis to evaluate strategies has a natural cor-
respondence in other decision requirements, and the choice
of using PAC in this analysis is mostly based on their preva-
lence rather than specific attributes of the requirements them-
selves. An alternative decision requirement, the expected loss
requirement, was evaluated compared with the PAC require-
ment and found to have minimal impact on the outcome.

PAC Requirement

In order to satisfy the PAC requirement, the hypothesis esti-
mated to be the best must be within some user-specified con-
stant� distance of the true best hypothesis with probability
1 � Æ. The sum of the error from each pair-wise compari-
son is bounded by this probability. LetHsel be the expected
utility of the selected hypotheses andHi be the expected util-
ity for the remaining hypotheses. Let̂H be the estimate of
the expected utility of a hypothesis. It is sufficient to bound
the probability of error in selection for pair-wise comparisons
with the following equation:

k�1X
i=1

Pr[Ĥi < Ĥsel � �jHi > Hsel + �] � Æ (1)

Thus the problem of bounding the overall error reduces to
bounding the error of eachk � 1 comparisons of the chosen
best hypothesis to the rest of the hypotheses.
The normality assumption reduces equation 1 to a function
of the parameter estimates, the number of examplesn used
to refine the estimates, the closeness parameter�, and an un-
known variance term�2. The two stopping criteria for selec-
tion aredominance, which is based on achieving a probability
(Æ) through sampling thathi will perform better on a specific
problem thanhj , and indifference, which is the probability
that the difference between performances will fall within�
of 0. For the rest of this discussion,� is ignored to simplify
understanding. The equation for the probability of incorrect
selection for a pair-wise comparison,�i, is:

�i = �

0
@�(Hsel �Hi)

p
nq

�2sel;i

1
A (2)

We can use this relationship to determine how many train-
ing examples to allocate to each comparison, given the error
bound on the probability of a mistake, an estimate of the dif-
ference in expected utility, and an estimate of the variance of
each hypothesis:

nsel;i =
�2sel;i

(Hsel �Hi)2
[��1(�i)]

2 (3)

Rational Analysis

The hypothesis selection algorithm as presented does not take
advantage of unequal distribution of error. By distributing
error unequally across the pair-wise comparisons using the
estimates of the cost and utility parameters, we can attempt
to satisfy the requirements using the minimum possible cost.
The general idea of rational analysis is to choose the error�i

for each comparison to minimize, subject to the given deci-
sion requirements:

k�1X
i=1

csel;insel;i

The algorithm must only ensure that thesumof the errors
remains less than the given bound. If one pair-wise compari-
son requires many more samples to achieve the same amount
of accuracy as another pair-wise comparison, then if the first
comparison is allowed to have more error and the second is
allowed less, the overall cost of achieving those local require-
ments might be reduced. In practice, this method significantly
reduces the number of samples necessary to achieve the re-
quirement for certain domains, as shown in [1].

GENERATING HYPOTHESES

In order to search the space of hypotheses, search algorithms
are used to generate hypotheses and search the hypothesis do-
main for the highest scoring, or the set of highest scoring, hy-
potheses. At each level of search, an adaptive problem solving
algorithm is used to evaluate the competing hypotheses with a
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given confidence bound. We assume that time is a constrained
resource as in [7, 3], so the search algorithms should limit the
number of search levels, while at the same time allowing non-
optimal choices so that the search will cover areas that could
not be reached through simple hill-climbing.

Local Beam Search

The first algorithm that is used to generate and search over
hypotheses is local beam search [11]. In a flexible plan-
ning and scheduling domain, each hypothesis, or combination
of heuristics, can be represented as a vector of percentages
where the percentages of heuristics associated with a certain
type of choice point in ASPEN sum to100% (see figure 3).
A random heuristic is included for each plan problem. The
basic algorithm is included below.
We chose a neighborhood of a vector to be defined as, for each
subset of heuristics associated with a certain choice point,
changing one of the usage percentages by a certain range, and
scaling all of the other usage percentages equal amounts so
that the sum is still100% (see figure 3). Letl be the bound
on the number of hypotheses the adaptive problem solver can
evaluate.

Hill Climbing (initial set of hypotheses)

While( timeRemains)

Select top x hypotheses using PAC with
confidence c.

Create l
b

higher scoring successors of
top b hypotheses, where successors are
generated in the neighborhood of
original hypothesis.

End

Genetic Algorithm

The second algorithm that is used to learn hypotheses is a
genetic algorithm [5]. Each hypothesis is represented as a
vector of percentages, as in the local beam search. The three
general operators (crossover, mutation, and reproduction) are
used to generate the next set of hypotheses to search over,
and ranking the hypotheses is done using adaptive problem
solving. The crossover operator is not aware of the different
subsets of heuristics, and may choose to split within one of
those subsets. Mutation also works without knowledge of the
constraint that subsets must sum to100%, so each subset is

scaled to 100 uniformly after the mutation operator is run.
The basic algorithm is shown below.

Genetic Algorithm (initial set of hypotheses)
While( timeRemains)

Rank x hypotheses using adaptive problem
solving with Confidence c

Store out hypothesis with highest score.

Select parents from within highest
ranked t with probability ptop

‘‘Reproduce’’ using crossover with
probability pcross or reproduction with
probability ( 1� pcross)

Mutate offspring with probability
pmutation

End

Search Considerations

In the context of this paper, both algorithms start the search
with a set of human expert derived strategies that are currently
in use in the domain model.
Both of these search techniques can be used for strict hill-
climbing in the search space. But strict hill-climbing will
limit the amount of space that is searched by restricting itself
to a local maximum. Locally non-optimal steps are added to
the search to possibly expand the breadth of the search.
There are many ways to allow locally non-optimal choices to
be made during the search. One way is to allow the search al-
gorithm to choose a hypothesis to propagate that scores worse
than the hypotheses in the beam. Another way is to set the
confidence bound in the adaptive problem solver’s decision
requirement low enough that it might include an incorrect hy-
pothesis in its selection. This second method has the added
benefit of decreasing the time associated with evaluating the
hypotheses in practice. Both of these methods have the effect
of including non-optimal steps into the search.
If a strict upper bound exists for time, and non-optimal
choices are allowed, both of these algorithms can be imple-
mented as anytime algorithms. The top ranking algorithms
can be saved at each iteration of the search.
Although adaptive problem solving approximates the score,
the ranking of each hypothesis on one search level is based
on acquiring enough information about the performance of an
hypothesis so that the ranking can be estimated within a re-
quired degree of accuracy for the pair-wise comparisons. This
does not ensure that the set of hypotheses with the highest
scores are ranked correctly, because their score is an approxi-
mation based on an error requirement that could be high. The
set of top scoring hypotheses must be evaluated with a high
confidence level before the absolute best can be selected.
Attributes of these two different search algorithms allow them
to perform in different ways to provide insight into character-
istics of the search space. Whereas the propagation of a vec-
tor in local beam search ignores potential dependencies be-
tween different subsets of heuristics, the crossover operation
in genetic algorithms tends to propagate subsets of the string
based on the distance between individual values in the vector,



known as the subset’sdefining length[5]. Based on where
the subsets for heuristics of different types are located in the
vector, the genetic algorithm may or may not reproduce them
as a set. For this reason, genetic algorithms may be superior
to local beam searches for domains where the influences of
different heuristic types are dependent.

METHOD IMPLEMENTATION

An adaptive control system of this type can be used in mis-
sion operations in multiple capacities. It can be used from
the start to design the spacecraft constraints and payload, by
evaluating each of the potential designs against possible envi-
ronments and comparing results. The system can be used on
the ground to perform mission planning and during flight to
quickly develop new schedules based on changing domains
or spacecraft deterioration. The system might be used on-
board a spacecraft to perform real-time fault detection and
recovery. Environmental constraints for the spacecraft, such
as the density or temperature of the surface for a lander, can
be determined when they are available to the spacecraft. Ac-
curate constraints are required for operation of a spacecraft in
an unknown environment regardless of whether an automated
planner is on-board the craft. These constraints can be used
to update the on-board or ground-based model of the environ-
ment, and adaptive problem solving can be used to efficiently
determine the optimal planning heuristics for the current en-
vironment.

EMPIRICAL EVALUATION

We claim that hypothesis generation can efficiently find a bet-
ter set of hypotheses to produce high quality solutions in a
given domain than an existing set, using adaptive problem
solving to evaluate the performance of each hypothesis. In
this section we provide evidence that in practice, these meth-
ods can generate heuristic sets superior to those generated by
model experts. Furthermore, the generation methods are com-
pared to evaluate how they perform for each given search do-
main.
The test of real-world applicability is based on three domains
related to planned space missions, using the ASPEN planning
and scheduling system. The original set of hypotheses that is
used is the set of heuristic combinations currently in use in
these and related models. We hope this illustrates how this
type of method can be useful in real-world domains, by im-
proving on control strategies already in use, improving the
strategies during missions, or updating the strategies to han-
dle domain shifts.

Evaluation
New Millennium EO-1 Domain – New Millennium Earth
Observer 1 (EO-1) is an earth imaging satellite featuring an
advanced multi-spectral imaging device. EO-1 mission oper-
ations consists of managing spacecraft operability constraints
(power, thermal, pointing, buffers, consumables, telecommu-
nications, etc.) and science goals (imaging of specific tar-
gets within particular observation parameters). Of particular
difficulty is managing the downlinks as the amount of data
generated by the imaging device is quite large and uplink op-
portunities are a limited resource. In addition, because sci-
ence targets for EO-1 are based upon short-term cloud predic-
tions, schedules must be generated daily. Automated planning

would supply needed assistance with daily scheduling, which
is not feasible with EO-1’s three person mission operations
team.
The EO-1 domain models the operations of the EO-1 opera-
tions for a two-day horizon [13]. It consists of 14 resources,
10 state variables and total of 38 different activity types. Each
EO-1 problem instance includes a randomly generated, fixed
profile that represents typical weather and instrument pattern.
Each problem also includes 3 to 16 randomly placed instru-
ment requests for observations and calibrations, and between
50 and 175 communications satellite passes.
The preferences for EO-1 include preferences for more cal-
ibrations and observations, earlier start times for the obser-
vations, fewer solar array and aperture manipulations, lower
maximum value over the entire horizon for the solar array,
and higher levels of propellant.
Applying the quantile-quantile (Q-Q) test to the EO-1 hy-
potheses shows that they are very likely normal distributions.
The Q-Q test compares the quantiles of the samples with a
normal distribution, and departures in linearity of the result-
ing plot show how the samples differ from a normal distribu-
tion. Results of applying the Q-Q test to these three domains
is shown in [1].
Figures 4 and 5 show scores of the generated heuristic com-
binations over 35 cycles of the search algorithms. Although
the curves for the scores of the two different search algorithms
are different, the percentage of improvement for the high scor-
ing hypothesis within each cycle is similar (128% for the lin-
ear search compared with147% for the genetic algorithm).
The percentage improvement for the mean score is somewhat
greater,161% for the genetic algorithm compared with116%
for the linear search. The high scoring heuristic combinations
are also somewhat different: the local search hypotheses use
a significantly lower percentage of random heuristics than the
genetic algorithm hypotheses, illustrating two different local
maxima in the search space.
Identical runs in all of these domains using the expected loss
criterion for the adaptive problem solver yielded very simi-
lar results using a similar number of iterations per cycle of
adaptive problem solving, so results using expected loss re-
quirements have been omitted.

New Millennium Space Technologies Four Landed Opera-
tions Domain– The ST-4 domain models the landed oper-
ations of a spacecraft designed to land on a comet and re-
turn a sample to earth. This model has 6 shared resources,
6 state variables, and 22 activity types. Resources and states
include battery level, bus power, communications, orbiter-in-
view, drill location, drill state, oven states for a primary and
backup oven state, camera state, and RAM. There are two
activity groups that correspond to different types of experi-
ments: mining and analyzing a sample, and taking a picture.
Each ST-4 problem instance includes a randomly generated,
fixed profile that represents communications visibility to the
orbiting spacecraft. Each problem also includes between 1
and 11 mining activities and between 1 and 24 picture exper-
iments at random start times.
The preferences for ST-4 include more imaging, more min-
ing, more battery power over the planning horizon, fewer drill
movements, and fewer uplinks.
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Figure 4: EO-1 model search iteration maximum and average
scores for 35 iterations of the local beam search (beam =2), using
rational PAC as the requirement for the adaptive problem solver.

Based on the Q-Q test, hypotheses from the ST-4 domain are
likely to be normally distributed, and thus provides a good
model for adaptive problem solving [1]. Graph 6 shows the
mean and high scores of the generated heuristic combinations
over 25 cycles of the search algorithms. Although the indif-
ference ratio for the PAC algorithm is three times higher than
in EO-1, the score rises significantly from the starting vector.
The high score reaches a maximum improvement of14%, and
the mean score has a maximum improvement of18%.
This domain includes an expert-generated heuristic for choos-
ing a method to resolve schedule conflicts in a manner appro-
priate to the DS-4 model, such as moving activities as op-
posed to deleting them when a resource has been overcom-
mitted. It is interesting to note that even in the best set of
hypotheses, the average usage of this heuristic was only22%
for a choice point with only3 possible heuristics, and no hy-
potheses with the expert heuristic usage over40% was ranked
in the top third in the adaptive problem solver’s ranking.

Rocky-7 Mars Rover Domain –Rocky-7 is a prototype Mars
rover for long-range planetary science gathering. The rover
domain models operations of a prototype rover for a typi-
cal Martian day [10]. It consists of 18 shared resources, 12
state variables and 32 activity types. Resources and states in-
clude cameras (front, rear, mast), mast, shovel, spectrometer,
solar array, battery, and RAM. There are three activity types
that correspond to different types of science experiments: dig-
ging at a location, collecting a spectrometer reading from tar-
get, and taking an image from a location (panorama, front,
rear). Rover problems are constructed by generating between
1 to 12 experiments and randomly generating parameters for
the experiments (such as target locations). Heuristics include
traveling salesman heuristics which attempt to order the rover
moves such that the total distance traveled is minimized.
Rocky-7 preferences include preferences for more science ac-
tivities and earlier start times for those activities, less travers-
ing and earlier start times for traversals, less battery usage,
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Figure 5: EO-1 model search iteration maximum and average
scores for 35 iterations of the genetic algorithm search, using ra-
tional PAC as the requirement for the adaptive problem solver.

fewer mast manipulations, and less time that the mast is de-
ployed over the planning horizon.
Graphs 7 show scores of the generated heuristic combinations
over40 cycles of the search algorithms. The graph describ-
ing the genetic algorithm search for the Rocky-7 domain was
omitted because of its similarity to the linear search graph.
The hypotheses in the Rocky-7 domain appear to come from a
non-normally distributed distribution compared to both EO-1
and ST-4, as shown by applying the Q-Q test to the original
hypothesis [1]. The adaptive problem solver decision require-
ment assumes a normal distribution, and the Rocky-7 results
illustrates the problem with violating this assumption. Vio-
lating the assumption of normality leads to evaluations which
cannot provide strong statistical guarantees as to their accu-
racy. The hypotheses for this particular Rocky-7 problem ap-
pear to be less continuous than the domain for EO-1. Over
all the search iterations, the greatest improvement in the max
scores101%, and the greatest improvement in the mean score
is 101%, although the accuracy of the evaluations is not guar-
anteed because of the violated normality assumption.
The five heuristics in the set that were designed for the Rover
domain by experts, including the multiple traveling salesmen
path planning heuristics, peak at45%, 38%, 35%, 34%, and
9% usage for each of their specific choice points, over all of
the top hypotheses chosen by the adaptive problem solver.
This might indicate that these heuristics should be used in
moderation with this domain instance.

RELATED WORK

Evaluating control strategies is a growing research topic.
Horvitz originally described a method for evaluating algo-
rithms based on a cost versus quality tradeoff [7]. Russell,
Subramanian, and Parr used dynamic programming to ratio-
nally select among a set of control strategies by estimating
utility (which includes cost) [12]. The MULTI-TAC system
considers allk-wise combinations of heuristics for solving a
CSP in its evaluation which also avoids problems with local
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Figure 6:ST-4 model maximum and average scores by iteration for
30 genetic algorithm generations, using rational PAC as the require-
ment for the adaptive problem solver.

maxima, but at a large expense to the search [8]. Fink de-
scribes a method that sets time bounds for selection as op-
posed to parameter estimation accuracy, since sampling time
is not large enough to attempt to minimize the number of
samples [3]. Previous articles describing adaptive problem
solving have developed general methods have been developed
for transforming a standard problem solver into an adaptive
one[Gratch & DeJong1992, 6], illustrated the application of
adaptive problem solving to real world scheduling problems
[6], and showed how adaptive problem solving can be cast as
a resource allocation problem [1]. We expand on these top-
ics by evaluating different methods for generating hypotheses
which can be used in adaptive problem solving to efficiently
estimate their utility and cost, considered separately.

FUTURE WORK

In the area of adaptive problem solving, additional work has
been proposed for the stopping criteria, which can be resource
bounded (specifically, time as a resource) instead of a relax-
ation of the ranking requirement, as in previous works on
similar topics [3]. Different methods of combining heuris-
tics could be applied to problems of this type. One method is
composite strategies, from operations research, which involve
logical decisions about the relative usage of heuristics as op-
posed to statistical methods. Another method is a portfolio
approach, which combines heuristics in a method similar to a
financial portfolio.
Current results do not indicate any direct benefit to using ei-
ther local beam search or genetic algorithms over the alter-
native. In order to predict an effective search algorithm for
each environment, it would be useful to generate a landscape
of the utilities for the hypothesis space [16]. Previous work
has been done in deterministic landscape generation [16, 15],
but no practical work has been done in stochastic landscape
generation, which is what this domain requires.
More intelligent methods of searching over the space of hy-
potheses could be exploited in this domain. It is not clear that
all of the model domains are continuous, so a further study of
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Figure 7:Rocky-7 model highest maximum and search iteration av-
erage scores for 40 iterations of the local beam search, using rational
PAC as the requirement for the adaptive problem solver.

the shape of the domain should precede the choice of a search
method. At a lower level, changing the mutation operators
in the current algorithms, such as intentionally weighting one
heuristic heavily out of all of the heuristics for a choice point,
may direct the search more efficiently.

CONCLUSIONS

This paper outlines different methods for generating control
strategies to use in adaptive problem solving, with the goal
of finding a control strategy or set of control strategies that
performs well in the given planning and scheduling environ-
ment. The idea of rational allocation is discussed along with
the statistical methods behind an adaptive problem solver.
The purpose is validated in all three planning and scheduling
domains, by showing significant overall improvement in the
generated plans. Two hypothesis generation techniques were
explored based on the the amount and types of improvement
they allowed.
Empirically, it appears that these methods could be used in
a mission operations environment to generate and evaluate a
domain-specific set of heuristics to control automated plan-
ning and scheduling, either on- or off-board the spacecraft.
These results are significant in that autonomous spacecraft
planning and scheduling is becoming a realistic option for
missions to unknown environments.
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